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ABSTRACT
Robotic platforms require accurate geo-spatial localization for high-level mission

planning, real-time site reconnaissance, and multi-machine collaboration. Global
navigation satellite system (GNSS) receivers are most commonly used to provide
UGVs with accurate geolocation. However, GNSS is not reliable in contested
environments because it is vulnerable to jamming, spoofing and black-outs. To
address these issues, the United States Army Corps of Engineers (USACE) -
Engineer Research and Development Center (ERDC) has developed the Active
Terrain Localization Imagery System (ATLIS) which uses on-board perception
and a priori satellite imagery to eliminate reliance on GNSS for global positioning
of a ground vehicle. Using LiDAR and camera imagery, ATLIS creates a vehicle-centric,
orthorectified image that is compared to an a priori satellite image using template
matching. It then produces a global position estimate for the vehicle. We develop
a method to estimate the uncertainty of this position estimate, enabling fusion with
other relative positioning sensors. We demonstrate the effectiveness of ATLIS in
aiding localization of an unmanned ground vehicle (UGV) in a complex outdoor
environment achieving an average planar euclidean distance error of 1.21m over
a 5.1km run when compared to a GPS ground truth.

Citation: K. Niles, S. Bunkley, W. J. Wagner, I. Blankenau, A. Netchaev, A. Soylemezoglu, “Satellite
Image Template Matching with Covariance Estimation for Unmanned Ground Vehicle Localization: Active
Terrain Localization Imaging System (ATLIS),” In Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

DISTRIBUTION A. Approved for public release;
distribution unlimited. OPSEC #: ERDC 22-104-KDN
(approved for release.)



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 1: High level overview of the ATLIS workflow

1 INTRODUCTION

Advances in GNSS and geospatial localization
technologies have resulted in their widespread use.
However, the GNSS infrastructure is fragile and
vulnerable to multiple failure modes [1]. The signal
from the satellite must first pass through the earth’s
atmosphere, which attenuates the already low power
signal, making it susceptible to offensive attacks
like jamming and spoofing. Environmental factors
that interrupt line of sight between a receiver and
satellites can also impact accuracy and reliability.

In robotics, GNSS receivers are used to make
the link between the UGV’s internal relative motion
frame and the global reference frame used by
an operator. The UGV can maintain its local
frame using techniques like dead reckoning and
Simultaneous Localization And Mapping (SLAM).
Without a GNSS signal however, a known collection
of landmarks, or ranging beacon measurements,
accumulated drift will prevent the UGV from
successfully executing long-range missions that
require autonomous navigation, reconnaissance, or
multi-system collaboration [2].

In this paper, we propose a method that uses

typical robotic sensors to accurately estimate its
location in the global frame without the use of a
GNSS receiver. Through real-world experimentation
in complex outdoor environments, ATLIS has
demonstrated an impressive average error of 1.21m
over 5.1km when compared to a GNSS-based ground
truth. This paper’s key contributions are:

• A method to create dense and accurate
top-down orthorectified images of a UGV’s
surroundings using lidar, cameras, and an
inertial measurement unit (IMU).

• A method that estimates a UGV’s global
position and the uncertainty of this estimate
by comparing the generated template image
to a geo-referenced satellite image using
template-matching

• Demonstration of this system integrated into
a localization system achieving a 1.21m mean
planar euclidean distance error over 5.1km.

Satellite Image Template Matching with Covariance Estimation for Unmanned Ground Vehicle Localization: Active Terrain
Localization Imaging System (ATLIS), Niles, et al.

Page 2 of 12



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2 BACKGROUND

Given the numerous current uses of GNSS,
accurate geolocation can be a matter of personal
safety, mission success, and national security.
Several existing techniques rely on improving the
signal quality and reliability of the GNSS system.
In some cases, this requires extra antennas for
beamforming at the receiver [3]. In others, new
satellites are needed to transmit at higher power
or over different frequency bands with added
encryption.

If GNSS positioning is not reliable, techniques
such as dead reckoning are used to maintain the
state of the system between periods of degraded
GNSS performance [3]. Kalman filters are used to
help reduce errors in the systems state estimation
[4, 5]. Often, local fixed frames are maintained
internally to correct for drift using a family of
techniques called Simultaneous Localization And
Mapping (SLAM). SLAM can produce extremely
accurate relative maps, but, without periodic GNSS
corrections, the drift between the UGV’s internal and
global frames will still grow [6].

The research community has developed
various approaches to overcome the GNSS-denied
localization problem. Many of these methods assume
a priori information in the form of a satellite image,
point-cloud, digital elevation model (DEM), or star
map. Star trackers use specialized sensors to estimate
the system’s location with respect to a star map
using techniques similar to those used by ancient
seafaring civilizations [3]. If the terrain contains
many geometric features LiDAR matching to DEMs
[7] or point clouds [8] can be used.

Cheung et al. describe an image-based
method that uses template matching to compare the
projection of an omni-camera sphere onto a flat
plane with a satellite image to estimate a vehicle’s
location on the satellite map [9]. This method is
promising as it only requires a satellite image, but
it suffers from the distortion of the projected image
due to deviation of the terrain from a plane and

lack of on-board sensors for dead reckoning. In
general, ground-to-aerial image matching is difficult
because the perspective differences in how the
images are obtained make feature-based matching
challenging. To combat these distortions and better
handle seasonal variation, other methods have been
developed [10, 11, 12].

We propose an alternative approach that uses
cross-correlation based image template matching,
similar to [9], and bypasses these viewpoint issues
by generating an orthorectified image of the ground
through a combination of LiDAR point-clouds and
camera imagery. The accuracy of the position
estimates produced via template matching remains
dependent on the environment, the quality of the
a priori satellite image, and the quality of the
vehicle-produced image. To take advantage of this
method without introducing excess noise into our
state estimation filter, it is essential to estimate
the uncertainty of a given position estimate. This
will enable context-dependent fusion of position
estimates for improving ground vehicle localization
accuracy.

Nickels et al. uses sum-of-squared-difference
(SSD) template matching for a tracking application
and lays out an approach to uncertainty estimation
[13]. Their work builds on [14] who defines a
response distribution Z based on the SSD metric

Z(i, j) = exp(−aRSSD(i, j)) (1)

where a is a normalization factor. In [14], the value
for a in Z is chosen so that the maximum value is
0.95. In [13], the value for a is instead chosen so that∑

i,j Z(i, j) = 1. This has the effect of suppressing
off-peak response compared to [14], i.e., values that
are close to the peak response will not be scaled
significantly, but values lower than the peak will
quickly drop off. Both [13] and [14] interpret Z as
a probability distribution of the true match location,
where Z(i, j) = P (L(i, j)) is the probability of the
true match location being L(i, j) where (x, y) =
L(i, j) is a function that converts the result image

Satellite Image Template Matching with Covariance Estimation for Unmanned Ground Vehicle Localization: Active Terrain
Localization Imaging System (ATLIS), Niles, et al.

Page 3 of 12



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

coordinates into a position in meters relative to the
top left corner of the result image. To enable fusion
of this estimate with other state estimates, Nickels et
al. approximates P (L(i, j)) ∼ N (µ,Σ) using a 2D
Gaussian distribution

(i∗, j∗) = argmax
i,j

Z(i, j), (µx, µy) = L(i∗, j∗)

Σ = f(µ, Z) =
∑
i,j

Z(i,j)(x−µx)2∑
i,j

Z(i,j)

∑
i,j

Z(i,j)(x−µx)(y−µy)∑
i,j

Z(i,j)∑
i,j

Z(i,j)(x−µx)(y−µy)∑
i,j

Z(i,j)

∑
i,j

Z(i,j)(y−µy)2∑
i,j

Z(i,j)

 (2)

where (x, y) = L(i, j) and f(µ, Z) is a standard
weighted covariance function.

3 METHODOLOGY
ATLIS is a tool that produces a global position

estimate by matching UGV’s sensor observations
with satellite imagery; see Figure 1 for an overview.
It requires five inputs: a GeoTiff of the area, the
current estimated UGV latitude and longitude, the
current UGV heading, and a colorized point cloud
capturing the current surroundings of the UGV.
This software is designed to be used with a state
estimation method such as an extended Kalman filter
(EKF) that fuses the position estimate with other
on-board sensors such as IMUs and wheel odometry.

3.1 Generate Image From Sensors
Fundamentally, ATLIS finds the geolocation of

the UGV by matching a vehicle-centric orthorectified
image to a georeferenced satellite image, i.e. a
GeoTIFF [15] . Perspective differences between
the UGV on the ground and the satellite in the
sky pose the first major challenge to this approach.
We address this problem using the ERDC-developed
Sensor Fusion ROS node to project the camera’s
images onto the LiDAR point clouds producing a
colorized point cloud in real time. This ensures

depth accuracy, but the cloud is sparse due to the low
resolution of the LiDARs. To create a denser cloud,
the node also buffers the LiDAR point clouds as the
UGV moves. This is accomplished by maintaining
the UGV’s location state through the transform tree
in ROS and transforming each new cloud into a fixed
frame temporarily before republishing in the sensor
frame.

The template image is created by passing the
point cloud to the ATLIS node with the heading
estimate from the state estimation system. ATLIS
uses the heading to rotate the point cloud to match the
orientation of the satellite image. It then rasterizes
the point cloud into a top-down 2D orthorectified
image by mapping the x and y components of each
point to an image bin based on the resolution of the
satellite image. Note that it is important to keep track
of the UGV’s position with respect to this image to
enable accurate position estimation.

3.2 Geolocation Estimation
ATLIS takes a template matching approach

to align the locally obtained rasterized image
T ∈ RWT×HT to the a priori satellite image
S ∈ RWS×HS . The satellite image for the current
mission, in the form of a GeoTIFF, can be stored
locally on the UGV before deployment. This step
helps ensure the system can continue to operate if all
network connections are severed.

To reduce the computational burden of matching
against the entire satellite image, a sub-image
S̄ ∈ RWS̄×HS̄ , centered on the current global position
estimate is extracted from the satellite image. The
initial global position estimate may be obtained
from a human operator using a tablet interface
with a satellite map overlay, or from a single
GNSS estimate. An array of matching scores,
R ∈ R(WR×HR) is produced in a moving window
fashion, sliding T along S̄ where WR = (WS̄ −
WT ) and HR = HS̄ − HT , computing a similarity
score between the two image patches at each window
position.
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OpenCV provides a template matching function
matchTemplate() which exposes several methods
for image comparison [16]. In our data, gaps in
the LiDAR create black sections in the template
image as shown in Figure 2. The chosen method
must then be robust to errors in these dark pixels.
For this reason Zero-Normalized Cross-Correlation
Coefficient (ZNCC) was chosen. This method
returns a fit score RZNCC ranging between positive
and negative one. The positive side represents
correlation with pixel brightness, while the negative
side corresponds to pixel shadow [17, 18, 19, 20, 21].
We can then simply truncate the negative scores to
negate the effect of the gaps in the template image
[4]. Thus, the result image RZNCC(u, v) is redefined
as follows.

R(u, v) = max{RZNCC(u, v), 0} (3)

A position estimate can be found by searching
for the maximum matching score in the result image
(i∗R, j

∗
R) = argmaxi,j R(i, j). It should be noted

that the location found in the matched image must be
offset by the UGV’s position in the template image.
ATLIS keeps track of the vehicle’s known position
within the source image (iv

S̄
, jv

S̄
) and the known

latitude and longitude (xS̄, yS̄) of the corner of the
local source image S̄ and combines this information
with the match location (i∗R, j

∗
R) to produce a global

position estimate (x̃, ỹ) of the vehicle.
It is important to consider the age of the satellite

imagery prior to using ATLIS. Often, the satellite
data obtained for a given area is several months if
not years old, and much of the environment may
have changed in that time. It is preferable to use
the most recently available imagery to enable optimal
matching performance. Even with recent imagery,
there is no guarantee that small details in the template
image will be present on the satellite image.

A bilateral filter is applied to both the template
and the satellite images to smooth some of these
details and to reduce the image noise before

cross-correlation. The bilateral filter was chosen
over other standard image filters because it maintains
definition over macro features [22]. Another optional
step is to desaturate both images. This step can be
helpful if there is a seasonal difference between when
the satellite image was collected and the current
season. These features help ensure the ATLIS
estimates maintain robustness when given non-ideal
priors.

Figure 2: The template image T overlaid on the
satellite source patch image S̄ at the match location.
The red dot represents the UGV’s location prior
while the green dot shows the ATLIS proposed
update. The pink ellipse displays the 95% confidence
interval for the estimated covariance matrix.

3.3 Positional Uncertainty Estimation
The accuracy of the outlined template matching

approach is dynamic, varying significantly with the
location within the environment. Certain areas of the
environment provide distinctive features that enable
accurate matching and high scores for a small region
of R, such as a road intersection. Other areas of
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the environment are less informative and produce
relatively uniform matching scores throughout the
search region, e.g., a parking lot or grassy field.
Often, the environment is informative along one
direction but less informative in another, e.g., a long
road, enabling accurate estimation of the vehicle
position perpendicular to the road but an inaccurate
estimate along the road, see Figure 2.

In addition to these environmental influences, if
the environment has undergone significant changes
since the satellite image was captured then there
will be a mismatch between T and S̄ resulting in
poor matching. For example, this type of mismatch
can occur due to new construction or seasonal
differences. Errors in the creation of T can also
result in matching problems. If multiple cameras are
used to produce the colorized cloud, white balance
differences can result in artificial color differences in
the image.

To ensure that fusing ATLIS estimates into
a localization system enables improved geospatial
localization, we require a way of characterizing the
uncertainty of the estimate. Directly using the ZNCC
matching scores for the response distribution Z = R
and then computing the positional covariance using
the weighted covariance calculation in Equation 2
results in a number of problems. First, by treating
the raw ZNCC scores R as a probability distribution
for the true position, too much weight is given to
low value scores, which produces higher uncertainty
position estimates than is desired. Second, the
weighted covariance calculation is invariant to a
linear transformation of Z. This means that higher
matching scores will not lead to lower positional
covariance estimates. Third, as the size of the source
patch image S̄ increases the estimated covariance
also grows, even if no new peaks are observed in
the expanded regions of R. Ideally, we do not want
the size of R to significantly affect the covariance
estimate if no new peaks are observed. We address
these problems by:

1. Scaling R using a non-linear response

distribution

2. Scaling the weighted covariance by a
non-linear function of the highest match score

3. Normalizing the weighted covariance by the
un-weighed covariance

The SSD metric is inversely related to the ZNCC
metric, so the same response distribution function,
Equation 1 will not work for our purposes; we want
R to have a higher value for areas that indicate a more
likely match and lower values for less likely matches.
We modify Equation 1 to account for this difference

Z(i, j) =
exp(aR(i, j))− 1

b
(4)

where b =
exp(aR(i∗R, j

∗
R))− 1

R(i∗R, j
∗
R))

and where a is a constant chosen to attenuate
the non-matched scores. In contrast to previous
approaches [14, 13], we do not allow a to be chosen
dynamically in an effort to enable more control
over the covariance estimation. After producing Z,
the covariance of the match, Σ, is computed using
Equation 2. To address items 2 and 3, we then
develop a function g(·) to scale Σ.

If the size of either the source patch image S̄ or
the template image T changes, the size of R will
change as well. ATLIS computes the un-weighted
covariance Σu = f(µc,W ) where W is the same
size as Z with all values equal to 1 and µc is the
center of W . To enable ease of tuning and the ability
for image sizes to change dynamically, we normalize
the covariance Σ by the largest eigenvalue of Σu,
λ = max(eig(Σcenter)). We choose to compute the
covariance matrix at the center of the result image
and not at the max match location because as the max
match location moves to the edges, the eigenvalues
increase to account for the fact that we are observing
less data near the max location. This is a useful
feature because if our match is near the edge, we
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want our system to be more uncertain than if it is at
the center, i.e. our previous position estimate.

In addition, we would like higher scores, i.e.,
better matches, to produce smaller covariances. We
therefore include a term in g(·) to accomplish scaling
based on the score at the max match location.
Combining the size and score scaling results in

Σ̃ = g(Σu, R, λ|c, d) = c

λ
· Σ ·R(i∗R, j

∗
R)

−d (5)

where Σ̃ is the scaled covariance, c is a parameter that
linearly scales the covariance, which is very useful
when tuning our EKF, and d is a parameter that
controls how much to let the value of the maximum
match affects the covariance. Note, if we get a
perfect match, R(i∗R, j

∗
R) = 1, then scaling by the

max match score has no effect.

3.4 State Estimation
We use the ROS Robot Localization Package

implementation of an Extended Kalman Filter (EKF)
for state estimation, which enables fusing of a
variety of sensors[5]. Dead reckoning is achieved
by fusing wheel odometry with orientation from
an Inertial Measurement Unit (IMU) that provides
a global north estimation using a magnetometer.
The ATLIS-aided estimate is produced by fusing
the same wheel odometry and IMU orientation with
of position estimates from ATLIS. In certain cases,
ATLIS provides a faulty match and the error in
position estimation is not effectively accounted for
by the covariance. We hypothesize that this may
be because ATLIS assumes a Gaussian distribution
where the template matching process can sometimes
produce matching scores R that indicate a more
complex distribution. For example, if the search
area contains multiple similar features, e.g., parallel
roads, a match may be made to the incorrect
road. A Gaussian distribution may not capture
this uncertainty accurately where a multi-modal
distribution may be more appropriate.

To mitigate the effect of overconfident poor
matches, the EKF discards ATLIS position estimates

if they are too far away from the current filtered
position estimate, as measured by the Mahalanobis
distance [23]. The rejection threshold feature
of Robot Localization is leveraged to handle this
function [5]. As the uncertainty of the position
estimate grows without observation of a global
position, the filter begins to accept ATLIS position
estimates that are further away from the current
position estimate. This is the desired behavior
as the longer the UGV travels without correction
from ATLIS, the more drift will accumulate due
to dead-reckoning. This scenario may occur when
traveling down a long straight trail where very few
features perpendicular to the road are present to
match to. As the UGV encounters an intersection,
ATLIS is able to produce an accurate match, and
since the covariance of our position estimate has
grown, the filter accepts the correction even though
it is a significant distance away from our current
position estimate. It is important to ensure the
position estimate covariances produced by the EKF
accurately reflect the true uncertainty so that the filter
can correctly differentiate the accuracy of ATLIS
corrections. However, the rejection threshold does
not account for faulty matches that fall within the
rejection threshold. Qualitatively though, matches
close to the current position estimate tend to have
appropriate covariances mitigating the effect of an
incorrect match.

4 RESULTS
We evaluate the performance of ATLIS in aiding

localization of a ground vehicle traversing a 5.1km
combat-trail like path with some off-road excursions.
This experiment was performed in August of 2021
and the satellite image used by ATLIS was taken in
2016 with a 0.1m/px resolution [24]. In addition,
approximately 800m of the path is obscured by
thick vegetation on the satellite map, making it
difficult for ATLIS to produce informative position
estimates. We use a high-accuracy fiber optic
gyro (FOG) dual antenna GNSS/inertial navigation
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system (INS) to establish a ground truth and compare
the dead-reckoning accuracy of our state estimation
system with the ATLIS aided accuracy. The
UGV used in this experiment is an ARGO J8,
which shares the same chassis as the U.S. Army’s
Small Multipurpose Equipment Transport (S-MET)
platform. In addition to the FOG GNSS/INS, the J8
is outfitted with three LiDARs, two 16 beam and one
64 beam, two forward facing cameras, an IMU, and
wheel encoders.

Table 1: Comparison of localization accuracy

Method Avg. Error (m) Max. Error (m)

Dead-Reckoning 6.4 11.7
ATLIS-Aided 1.21 3.53

Figure 3: Line graph displaying planar euclidean
distance error over time for dead-reckoning (red) and
ATLIS-aided (green).

We track the planar euclidean distance absolute
positional error over the course of the run for both
dead-reckoning and ATLIS-aided localization, see
Figure 3, and show large improvements in both
the average and maximum planar euclidean distance
error as shown in Table 1. The dead reckoning error
is small at the beginning of the run, but over time
this error compounds, causing the UGV’s position
to drift by nearly 12m by the end of the run. The
ATLIS-aided system does a much better job tracking
the ground truth throughout the entirety of the run,

deviating by more than 2.5m for only a short period.
This can be seen clearly at second 1000 on Figure
3 the two lines follow a similar shape and ATLIS is
able to correct the drift that caused dead-reckoning
to climb to 9m. The accuracy of dead reckoning vs
ATLIS can also be seen in the satellite overlay in
Figure 5. ATLIS is able to keep the vehicle position
estimate on the road and near the ground truth, while
dead-reckoning has the vehicle position off the road
and in the ditch for a large portion of the time. These
types of errors are problematic for waypoint based
navigation as the planner will have difficulty reaching
goals that appear to be within an obstacle due to this
positional error.

Though ATLIS improves the average error of the
run, there is a section between 700 seconds 800
seconds where ATLIS underperforms dead reckoning
as seen in Figure 3; this is due to two major factors.
The first of these factors is related to the location on
the map where this performance degradation occurs.
The location in question is the approximately 800m
stretch of road that is obfuscated by thick vegetation
on the satellite map. Though most of the road is
under tree cover, there are small sections of the
road that are visible on the map. This situation is
especially challenging for ATLIS because when a
match is found, the unweighted covariance Σu will
be small, expressing high confidence, because the
system only matches well for that small section of
uncovered road. If the max match score is not very
high the R(i∗R, j

∗
R)

−d component of Equation 5 will
help to inflate this covariance. Despite this scaling,
ATLIS is still occasionally overconfident. In this
case, the EKF pose rejection can help to mitigate the
effect of poor matches.

The other factor that contributes to the
underperformance of ATLIS stems from a white
balancing issue we observed during this run. As
shown in Figure 4, the camera configuration on
the UGV is using the two front cameras to project
the color on our LiDAR point cloud. Because the
two cameras were not properly white balanced with
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each other, projection on the point cloud created a
discoloration along the center of the cloud. This
discoloration occasionally causes ATLIS to match to
the side of the road instead of the center in scenarios
where the road is less visible on the map. Since
making this observation, the camera configuration
has been changed so that the projection is only
coming from a single camera directly in the center.
This change helps eliminate this issue and will be
discussed further in future work.

Figure 4: (Top) First person view of the camera data
provided by the UGV to highlight white balancing
issue. (Bottom) Top down view of the colorized point
cloud provided by the UGV highlighting effect of
white balancing on the cloud colorization.The green
circle is the covariance around the UGV’s position

5 CONCLUSION
ATLIS is a global localization system that enables

a UGV to localize itself within an a priori satellite
image. Onboard cameras are fused with LiDAR
to generate a colorized point cloud of the ground.
This cloud is rasterized into an orthorectified local
image that enables accurate estimation of the vehicle
position using template-matching. The covariance
estimation method developed is shown to work well,
correctly providing small covariances when there are
salient features in the environment, large covariances
when in more uniform and less informative areas, and
elongated covariances in areas such as long straight
roads, where confidence is higher along the width of
the road and lower along the length. By combining
these techniques, ATLIS is shown to perform similar
to a GNSS based system in an experiment where
our UGV traveled over 5.1km while maintaining an
average error of 1.21m compared to ground truth.

From this experiment, we were able to identify
a number of areas for improving the system.
The camera-LiDAR fusion approach to handing
perspective differences between the UGV and the
satellite imagery is shown to be successful in most
cases, but is limited for areas of the environment
where the UGV is obscured from above by tree
cover. We are interested in exploring methods
to help increase the uncertainty in this scenario.
Future plans also include efforts to minimize error
due to hardware based limitations such as white
balancing. ATLIS is shown to be effective for
on-trail localization, but will likely have difficulty
in open spaces due to the lack of distinctive visual
features. However, if there are elevation changes,
using LiDAR-DEM matching approaches may help
to compensate. In the near-term, we plan to
more rigorously evaluate ATLIS, comparing various
matching approaches and image filtering methods
such as canny edge detection across a variety of
environments including desert and urban regions.
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Figure 5: Satellite view of experiment area with an overlay of the path traveled by the UGV with ground truth in
blue, dead reckoning in red, ATLIS-aided localization in green.
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